10 research outputs found

    Development and Manufacturing of Scaffold-less Constructs for Tendon/Ligament Repair.

    Full text link
    Soft tissues, such as rotator cuff tendons and the anterior cruciate ligament (ACL), integrate with the subchondral bone through a complex multi-tissue interface that functions to minimize the formation of stress concentrations and enable the efficient transfer of load between tendon or ligament and bone. Current rotator cuff tendon and ACL repair techniques, requiring the reattachment of the tendon/ligament to its original bony footprint, fail to regenerate this interface. Instead, the repaired insertion site transitions from tendon/ligament to bone through a disorganized, fibrovascular scar tissue with weak mechanical properties, leaving it prone to failure and compromising long-term clinical outcomes. To improve tendon-bone integration following rotator cuff repairs, the objective of this thesis was to utilize a scaffold-less tissue engineered construct to promote the regeneration of the tendon-bone interface and develop a reproducible, automated manufacturing system to facilitate the advancement of the construct towards clinical use. Matrix organization and mechanical properties of the regenerated enthesis were evaluated in both acute (immediate repair) and chronic (repair 4 weeks post injury) supraspinatus tear rat models. Utilization of tissue-engineered constructs resulted in superior enthesis regeneration compared to current mechanical fixation techniques. Next, to enhance the reproducibility and uniformity of existing multi-phasic scaffold-less construct fabrication methodologies, protocol standards and a novel delamination system were developed and later extrapolated for use with human derived constructs. The novel construct fabrication methods yielded an increased number of engineered constructs of consistent size and mechanical properties. Temporal gene expression confirmed the commitment of human derived constructs toward tendon and bone-like tissues. Lastly, to facilitate the eventual large-scale commercial production of our multiphasic tissues, a novel semi-closed bioreactor system was developed and validated. The use of the bioreactor successfully facilitated the co-culture and integration of two distinct tissue types in a single chamber without any direct user manipulation. The findings described in this thesis will lead to the development of a new soft-tissue-to-bone repair strategy to improve functional tendon/ligament repair outcomes and provide the framework for expediting the clinical and commercial translation of our tissue engineering technologies.PhDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108984/1/mikesmee_1.pd

    Allogeneic Versus Autologous Derived Cell Sources for Use in Engineered Bone-Ligament-Bone Grafts in Sheep Anterior Cruciate Ligament Repair

    Full text link
    The use of autografts versus allografts for anterior cruciate ligament (ACL) reconstruction is controversial. The current popular options for ACL reconstruction are patellar tendon or hamstring autografts, yet advances in allograft technologies have made allogeneic grafts a favorable option for repair tissue. Despite this, the mismatched biomechanical properties and risk of osteoarthritis resulting from the current graft technologies have prompted the investigation of new tissue sources for ACL reconstruction. Previous work by our lab has demonstrated that tissue-engineered bone-ligament-bone (BLB) constructs generated from an allogeneic cell source develop structural and functional properties similar to those of native ACL and vascular and neural structures that exceed those of autologous patellar tendon grafts. In this study, we investigated the effectiveness of our tissue-engineered ligament constructs fabricated from autologous versus allogeneic cell sources. Our preliminary results demonstrate that 6 months postimplantation, our tissue-engineered auto- and allogeneic BLB grafts show similar histological and mechanical outcomes indicating that the autologous grafts are a viable option for ACL reconstruction. These data indicate that our tissue-engineered autologous ligament graft could be used in clinical situations where immune rejection and disease transmission may preclude allograft use.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140234/1/ten.tea.2014.0422.pd

    Fresh Versus Frozen Engineered Bone–Ligament–Bone Grafts for Sheep Anterior Cruciate Ligament Repair

    Full text link
    Surgical intervention is often required to restore knee instability in patients with anterior cruciate ligament (ACL) injury. The most commonly used grafts for ACL reconstruction are tendon autografts or allografts. These current options, however, have shown failure rates requiring revision and continued instability in the long term. The mismatched biomechanical properties of the current tendon grafts compared with native ACL tissue are thought to contribute to these poor outcomes and potential risk of early onset osteoarthritis. As a possible solution to these issues, our laboratory has fabricated tissue-engineered ligament constructs that exhibit structural and functional properties similar to those of native ACL tissue after 6 months implantation. In addition, these tissue-engineered grafts achieve vascular and neural development that exceeds those of patellar tendon grafts. However, the utility of our tissue-engineered grafts is limited by the labor-intensive method required to produce the constructs and the need to use the constructs fresh, directly from the cell culturing system. Ideally, these constructs would be fabricated and stored until needed. Thus, in this study, we investigated the efficacy of freezing our tissue-engineered constructs as a method of preservation before use for ACL reconstruction. We hypothesized that frozen constructs would have similar histological and biomechanical outcomes compared with our fresh model. Our results showed that 6 months postimplantation as an ACL replacement graft, both our tissue-engineered fresh and frozen grafts demonstrated similar mechanical and histological outcomes, indicating that freezing is a suitable method for preserving and storing our graft before ACL reconstruction. The ability to use frozen constructs significantly increases the versatility of our graft technology expanding the clinical utility of our graft.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140250/1/ten.tec.2014.0542.pd

    Three-Dimensional Engineered Bone–Ligament–Bone Constructs for Anterior Cruciate Ligament Replacement

    Full text link
    The anterior cruciate ligament (ACL), a major stabilizer of the knee, is commonly injured. Because of its intrinsic poor healing ability, a torn ACL is usually reconstructed by a graft. We developed a multi-phasic, or bone?ligament?bone, tissue-engineered construct for ACL grafts using bone marrow stromal cells and sheep as a model system. After 6 months in vivo, the constructs increased in cross section and exhibited a well-organized microstructure, native bone integration, a functional enthesis, vascularization, innervation, increased collagen content, and structural alignment. The constructs increased in stiffness to 52% of the tangent modulus and 95% of the geometric stiffness of native ACL. The viscoelastic response of the explants was virtually indistinguishable from that of adult ACL. These results suggest that our constructs after implantation can obtain physiologically relevant structural and functional characteristics comparable to those of adult ACL. They present a viable option for ACL replacement.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98477/1/ten%2Etea%2E2011%2E0231.pd

    Synthesis of 1,2,3-Triazolyl Nucleoside Analogs as Potential Anti-Influenza A (H3N2 Subtype) Virus Agents

    No full text
    Montmorillonite K10 impregnated with copper dichloride and potassium iodide (CuCl2 /KI/K10) was used as catalyst in the cycloaddition of azides and propargylnucleobases, to provide the corresponding 1,4-disubstituted 1,2,3-triazoles in good yield. All compounds 16-23 were evaluated for their antiviral activity in vitro. Compound 18 showed moderate inhibition against influenza virus A (H3N2).status: publishe

    Allogeneic Versus Autologous Derived Cell Sources for Use in Engineered Bone-Ligament-Bone Grafts in Sheep Anterior Cruciate Ligament Repair

    No full text
    The use of autografts versus allografts for anterior cruciate ligament (ACL) reconstruction is controversial. The current popular options for ACL reconstruction are patellar tendon or hamstring autografts, yet advances in allograft technologies have made allogeneic grafts a favorable option for repair tissue. Despite this, the mismatched biomechanical properties and risk of osteoarthritis resulting from the current graft technologies have prompted the investigation of new tissue sources for ACL reconstruction. Previous work by our lab has demonstrated that tissue-engineered bone-ligament-bone (BLB) constructs generated from an allogeneic cell source develop structural and functional properties similar to those of native ACL and vascular and neural structures that exceed those of autologous patellar tendon grafts. In this study, we investigated the effectiveness of our tissue-engineered ligament constructs fabricated from autologous versus allogeneic cell sources. Our preliminary results demonstrate that 6 months postimplantation, our tissue-engineered auto- and allogeneic BLB grafts show similar histological and mechanical outcomes indicating that the autologous grafts are a viable option for ACL reconstruction. These data indicate that our tissue-engineered autologous ligament graft could be used in clinical situations where immune rejection and disease transmission may preclude allograft use.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140234/1/ten.tea.2014.0422.pd
    corecore